题目连接:
Description
There is a matrix M that has n rows and m columns (1≤n≤1000,1≤m≤1000).Then we perform q(1≤q≤100,000) operations:
1 x y: Swap row x and row y (1≤x,y≤n);
2 x y: Swap column x and column y (1≤x,y≤m);
3 x y: Add y to all elements in row x (1≤x≤n,1≤y≤10,000);
4 x y: Add y to all elements in column x (1≤x≤m,1≤y≤10,000);
Input
There are multiple test cases. The first line of input contains an integer T(1≤T≤20) indicating the number of test cases. For each test case:
The first line contains three integers n, m and q.
The following n lines describe the matrix M.(1≤Mi,j≤10,000) for all (1≤i≤n,1≤j≤m). The following q lines contains three integers a(1≤a≤4), x and y.Output
For each test case, output the matrix M after all q operations.
Sample Input
2
3 4 2 1 2 3 4 2 3 4 5 3 4 5 6 1 1 2 3 1 10 2 2 2 1 10 10 1 1 1 2 2 1 2Sample Output
12 13 14 15
1 2 3 4 3 4 5 6 1 10 10 1Hint
题意
有一个\(n\)行\(m\)列的矩阵\((1 \leq n \leq 1000 ,1 \leq m \leq 1000 )\),在这个矩阵上进行$q $ \((1 \leq q \leq 100,000)\) 个操作:
1 x y: 交换矩阵\(M\)的第\(x\)行和第\(y\)行\((1 \leq x,y \leq n)\);
2 x y: 交换矩阵\(M\)的第\(x\)列和第\(y\)列\((1 \leq x,y \leq m)\); 3 x y: 对矩阵\(M\)的第\(x\)行的每一个数加上\(y(1 \leq x \leq n,1 \leq y \leq 10,000)\); 4 x y: 对矩阵\(M\)的第\(x\)列的每一个数加上\(y(1 \leq x \leq m,1 \leq y \leq 10,000)\);题解:
其实这些操作看着麻烦
但是我们都去打个标记就好了
他对于每一行和每一列的操作是分开的,我们对于每一行和每一列打标记就行了。
代码
#includeusing namespace std;const int maxn = 1005;int l[maxn],r[maxn],l1[maxn],r1[maxn];int a[maxn][maxn];void solve(){ int n,m,q; scanf("%d%d%d",&n,&m,&q); for(int i=1;i<=n;i++)l1[i]=i,l[i]=0; for(int i=1;i<=m;i++)r1[i]=i,r[i]=0; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]); for(int i=1;i<=q;i++) { int a,b,c; scanf("%d%d%d",&a,&b,&c); if(a==1)swap(l1[b],l1[c]); if(a==2)swap(r1[b],r1[c]); if(a==3)l[l1[b]]+=c; if(a==4)r[r1[b]]+=c; } for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { if(j==m)printf("%d",a[l1[i]][r1[j]]+l[l1[i]]+r[r1[j]]); else printf("%d ",a[l1[i]][r1[j]]+l[l1[i]]+r[r1[j]]); } printf("\n"); }}int main(){ int t;scanf("%d",&t); while(t--)solve(); return 0;}